This function is used to compute statistics required by the t2 of HOTELLING or Shewhart Multivariate chart.
Usage
mqcs.t2(x, ...)
# S3 method for default
mqcs.t2(
x,
data.name = NULL,
limits = NULL,
Xmv = NULL,
S = NULL,
colm = NULL,
alpha = 0.01,
phase = 1,
method = "sw",
plot = FALSE,
...
)
# S3 method for mqcd
mqcs.t2(
x,
limits = NULL,
Xmv = NULL,
S = NULL,
colm = NULL,
alpha = 0.01,
phase = 1,
method = "sw",
plot = FALSE,
...
)
Arguments
- x
An object of class 'mqcd'
- ...
Arguments passed to or from methods.
- data.name
A string that specifies the title displayed on the plots. If not provided it is taken from the name of the object
x
.- limits
A two-values vector specifying the control limits.
- Xmv
The mean vector. It is only specified for Phase II or when the parameters of the distribution are known.
- S
The sample covariance matrix. It is only used for Phase II or when the parameters of the distribution are known.
- colm
The number of samples (m) and it is only used in Hotelling control chart for Phase II.
- alpha
It is the the significance level (0.01 for default)
- phase
Allows to select the type of UCL to use. Only values of phase = 1 or 2 are allowed.
- method
The method employed to compute the covariance matrix in the individual observation case. Two methods are used "sw" for compute according to (Sullivan,Woodall 1996a) and "hm" by (Holmes,Mergen 1993)
- plot
Logical value. If
TRUE
a t2 chart should be plotted.
Examples
##
## Continuous data
##
library(qcr)
data(dowel1)
str(dowel1)
#> 'data.frame': 40 obs. of 2 variables:
#> $ diameter: num 0.492 0.501 0.491 0.492 0.505 0.5 0.497 0.509 0.49 0.499 ...
#> $ length : num 0.988 1.011 1.008 0.97 1.003 ...
data.mqcd <- mqcd(dowel1)
res.mqcs <- mqcs.t2(data.mqcd)
summary(res.mqcs)
#>
#> Summary of group statistics:
#> V1
#> Min. :0.09137
#> 1st Qu.:0.60154
#> Median :1.66096
#> Mean :1.95000
#> 3rd Qu.:2.64402
#> Max. :5.34020
#>
#> Number of quality characteristics: 2
#> Number of samples or observations: 40
#> Number of observations or sample size: 1
#>
#> Mean Vector:
#> 0.500875 1.001825
#> Covariance Matrix:
#> diameter length
#> [1,] 4.908654e-05 8.584936e-05
#> [2,] 8.584936e-05 4.199429e-04
#>
#> Control limits:
#> lcl ucl
#> 0.00000 12.44888
#>
#> Number beyond limits: 0
plot(res.mqcs, title =" Hotelling Control Chart for dowel1")
data(archery1)
str(archery1)
#> num [1:24, 1:2, 1:3] 24.14 28.55 3.97 28.57 -3.43 ...
#> - attr(*, "dimnames")=List of 3
#> ..$ : NULL
#> ..$ : chr [1:2] "x-coordinate" "y-coordinate"
#> ..$ : NULL
#> - attr(*, "names")= chr [1:144] "x-coordinate" "y-coordinate" NA NA ...
data.mqcd <- mqcd(archery1)
res.mqcs <- mqcs.t2(data.mqcd)
summary(res.mqcs)
#>
#> Summary of group statistics:
#> V1
#> Min. :0.04769
#> 1st Qu.:0.37341
#> Median :0.92883
#> Mean :1.51997
#> 3rd Qu.:2.11386
#> Max. :6.16892
#>
#> Number of quality characteristics: 2
#> Number of samples or observations: 24
#> Number of observations or sample size: 3
#>
#> Mean Vector:
#> 6.779028 5.772917
#> Covariance Matrix:
#> [,1] [,2]
#> [1,] 105.25999 48.44271
#> [2,] 48.44271 149.28805
#>
#> Control limits:
#> lcl ucl
#> 0.000000 9.958262
#>
#> Number beyond limits: 0
plot(res.mqcs, title =" Hotelling Control Chart for archery1")