Estimate "Cpm"
using the method described by Kerstin Vannman(2001).
Usage
qcs.hat.cpm(
object,
limits = c(lsl = -3, usl = 3),
target = NULL,
mu = 0,
std.dev = 1,
nsigmas = 3,
k0 = 1,
alpha = 0.05,
n = 50,
contour = TRUE,
ylim = NULL,
...
)
Arguments
- object
qcs object of type
"qcs.xbar"
or"qcs.one"
.- limits
A vector specifying the lower and upper specification limits.
- target
A value specifying the target of the process. If it is
NULL
, the target is set at the middle value between specification limits.- mu
A value specifying the mean of data.
- std.dev
A value specifying the within-group standard deviation.
- nsigmas
A numeric value specifying the number of sigmas to use.
- k0
A numeric value. If the capacity index exceeds the
k
value, then the process is capable.- alpha
The significance level (by default alpha=0.05).
- n
Size of the sample.
- contour
Logical value indicating whether contour graph should be plotted.
- ylim
The "y" limits of the plot.
- ...
Arguments to be passed to or from methods.
References
Montgomery, D.C. (1991) Introduction to Statistical Quality Control, 2nd
ed, New York, John Wiley & Sons.
Vannman, K. (2001). A Graphical Method to Control Process Capability. Frontiers in Statistical Quality Control,
No 6, Editors: H-J Lenz and P-TH Wilrich. Physica-Verlag, Heidelberg, 290-311.
Hubele and Vannman (2004). The E???ect of Pooled and Un-pooled Variance Estimators on Cpm When Using Subsamples.
Journal Quality Technology, 36, 207-222.