Skip to contents

This function is used to compute statistics required by the DFD chart.

Usage

fdqcs.depth(x, ...)

# S3 method for default
fdqcs.depth(
  x,
  data.name = NULL,
  func.depth = depth.mode,
  nb = 200,
  type = c("trim", "pond"),
  ns = 0.01,
  plot = TRUE,
  trim = 0.025,
  smo = 0.05,
  draw.control = NULL,
  ...
)

# S3 method for fdqcd
fdqcs.depth(
  x,
  func.depth = depth.mode,
  nb = 200,
  type = c("trim", "pond"),
  ns = 0.01,
  plot = TRUE,
  trim = 0.025,
  smo = 0.05,
  draw.control = NULL,
  ...
)

Arguments

x

An object of class 'fdqcd'.

...

Arguments passed to or from methods.

data.name

A string that specifies the title displayed on the plots. If not provided it is taken from the name of the object x.

func.depth

Type of depth measure, by default depth.mode.

nb

The number of bootstrap samples.

type

The method used to trim the data (trim or pond).

ns

Quantile to determine the cutoff from the Bootstrap procedure.

plot

Logical value. If TRUE a DFD chart should be plotted.

trim

The percentage of the trimming.

smo

The smoothing parameter for the bootstrap samples.

draw.control

It specifies the col, lty and lwd for objects: fdataobj, statistic, IN and OUT.

References

Flores, M.; Naya, S.; Fernández-Casal,R.; Zaragoza, S.; Raña, P.; Tarrío-Saavedra, J. Constructing a Control Chart Using Functional Data. Mathematics 2020, 8, 58.

Examples

if (FALSE) {
library(qcr)
m <- 30
tt<-seq(0,1,len=m)
mu<-30 * tt * (1 - tt)^(3/2)
n0 <- 100
set.seed(12345)
mdata<-matrix(NA,ncol=m,nrow=n0)
sigma <- exp(-3*as.matrix(dist(tt))/0.9)
for (i in 1:n0) mdata[i,]<- mu+0.5*mvrnorm(mu = mu,Sigma = sigma )
fdchart <- fdqcd(mdata)
plot.fdqcd(fdchart,type="l",col="gray")
set.seed(1234)
fddep <- fdqcs.depth(fdchart,plot = T)
plot(fddep,title.fdata = "Fdata",title.depth = "Depth")
summary(fddep)
}