This function is used to compute statistics required by the DFD chart.
Usage
fdqcs.depth(x, ...)
# S3 method for default
fdqcs.depth(
x,
data.name = NULL,
func.depth = depth.mode,
nb = 200,
type = c("trim", "pond"),
ns = 0.01,
plot = TRUE,
trim = 0.025,
smo = 0.05,
draw.control = NULL,
...
)
# S3 method for fdqcd
fdqcs.depth(
x,
func.depth = depth.mode,
nb = 200,
type = c("trim", "pond"),
ns = 0.01,
plot = TRUE,
trim = 0.025,
smo = 0.05,
draw.control = NULL,
...
)
Arguments
- x
An object of class 'fdqcd'.
- ...
Arguments passed to or from methods.
- data.name
A string that specifies the title displayed on the plots. If not provided it is taken from the name of the object
x
.- func.depth
Type of depth measure, by default depth.mode.
- nb
The number of bootstrap samples.
- type
The method used to trim the data (trim or pond).
- ns
Quantile to determine the cutoff from the Bootstrap procedure.
- plot
Logical value. If
TRUE
a DFD chart should be plotted.- trim
The percentage of the trimming.
- smo
The smoothing parameter for the bootstrap samples.
- draw.control
It specifies the col, lty and lwd for objects: fdataobj, statistic, IN and OUT.
References
Flores, M.; Naya, S.; Fernández-Casal,R.; Zaragoza, S.; Raña, P.; Tarrío-Saavedra, J. Constructing a Control Chart Using Functional Data. Mathematics 2020, 8, 58.
Examples
if (FALSE) {
library(qcr)
m <- 30
tt<-seq(0,1,len=m)
mu<-30 * tt * (1 - tt)^(3/2)
n0 <- 100
set.seed(12345)
mdata<-matrix(NA,ncol=m,nrow=n0)
sigma <- exp(-3*as.matrix(dist(tt))/0.9)
for (i in 1:n0) mdata[i,]<- mu+0.5*mvrnorm(mu = mu,Sigma = sigma )
fdchart <- fdqcd(mdata)
plot.fdqcd(fdchart,type="l",col="gray")
set.seed(1234)
fddep <- fdqcs.depth(fdchart,plot = T)
plot(fddep,title.fdata = "Fdata",title.depth = "Depth")
summary(fddep)
}