Skip to contents

This function is used to compute statistics required by the RFD chart.

Usage

fdqcs.rank(x, ...)

# S3 method for fdqcd
fdqcs.rank(
  x,
  y = x,
  func.depth = depth.FM,
  alpha = 0.01,
  plot = TRUE,
  trim = 0.1,
  draw.control = NULL,
  ...
)

Arguments

x

The set of reference curves respect to which the depth is computed. fdqcd class object.

...

Arguments passed to or from methods.

y

The set of new curves to evaluate the depth. fdqcd class object.

func.depth

Type of depth measure, by default depth.FM

alpha

Quantile to determine the cutoff from the Bootstrap procedure.

plot

Logical value. If TRUE a RFD chart should be plotted.

trim

The percentage of the trimming.

draw.control

It specifies the col, lty and lwd for objects: fdataobj, statistic, IN and OUT.

References

Flores, M.; Naya, S.; Fernández-Casal,R.; Zaragoza, S.; Raña, P.; Tarrío-Saavedra, J. Constructing a Control Chart Using Functional Data. Mathematics 2020, 8, 58.

Examples

if (FALSE) {
library(qcr)
m <- 30
tt<-seq(0,1,len=m)
mu<-30 * tt * (1 - tt)^(3/2)
n0 <- 100
set.seed(12345)
mdata<-matrix(NA,ncol=m,nrow=n0)
sigma <- exp(-3*as.matrix(dist(tt))/0.9)
for (i in 1:n0) mdata[i,]<- mu+0.5*mvrnorm(mu = mu,Sigma = sigma )
fdchart <- fdqcd(mdata)
summary(fdchart)
plot(fdchart,type="l",col="gray")
out <- fddep$out
## Outliers - State in Control
alpha <- 0.005
trim <- 0.1
while (length(out)>0) {
 mdata <- fddep$fdata$data[-out,]
 fddep <- fdqcs.depth(mdata,ns = alpha, trim=trim, plot=FALSE)
 out <- fddep$out
}
plot(fddep,title.fdata = "FD-State in Control",title.depth = "Depth")
# Ha
mu_a<- 30 * tt^(3/2) * (1 - tt)
n_a <- 50
set.seed(12345)
mdata_a<-matrix(NA,ncol=m,nrow=n_a)
for (i in 1:n_a) mdata_a[i,]<- mu_a+0.5*mvrnorm(mu = mu_a,Sigma = sigma )
fdchart_a <- fdqcd(mdata_a,"Curves Monitoring")
plot(fdchart_a)
plot(fdchart,fdchart_a,main="Phase II")
pashe2.chart <- fdqcs.rank(fdchart,fdchart_a)
plot(pashe2.chart,title.fdata = "FDA",title.rank = "Rank")
summary(pashe2.chart)
}